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I .  Phys. A:  Math.  Gen .  23 (1990)  2927-2937. Printed i n  the U K  

Path integrals, stochastic differential equations and operator 
ordering in supersymmetric quantum mechanics 

Michael O'Connor 
Department of Phbsics, Loomis Laboratory, Uni\ersity of Illinois at Urbana-Champaign, 
1110 W Green St. L'rbana, I L  61801, USA 

Receiied 19 September 1989. in final form 2 0  Mdrch 1990 

Abstract. We give an  explicit relation between the path integral and  the operator ordering 
of the Hamiltonian for supersymmetric quantum mechanics. Using a stochastic differential 
equation we are  able to  resolbe the ambiguities associated with defining the supersymmetric 
path integral. 

1. Introduction 

Supersymmetric quantum mechanics ( S U S Y Q M )  was introduced by Witten [ 11 as a 
laboratory for understanding supersymmetry breaking in supersymmetric quantum 
field theories. In further study of S U S Y Q M  [2], Witten showed that upon quantisation, 
the supersymmetric nonlinear r -model  was equivalent to the Laplacian (De  Rham- 
Kodaira Laplacian) acting on differential forms. In (31 a geometric interpretation of 
SUSYQV was used to give a new proof of the Morse theorem. Alvarez-Gaumk, Fridan 
and  Windey [4] were able to use geometric interpretations of SL'SYQM to derive the 
index theorem in a manner accessible to physicists by the formal manipulation of the 
supersymmetric path-integral. 

For quantum mechanics on a curved manifold it has been known for a long time 
that there are ambiguities associated with a careful discretisation treatment of the path 
integral [ 5 ] .  When the discretised path integral is compared with the formal path 
integral, there are extra terms, called extra potential terms. Gervais and Jevicki [6] 
showed that even on a flat manifold when a point-canonical transformation of the 
path integral is performed, these extra potential terms arise. We would like to emphasise 
that we d o  not question the validity of formal path integral methods for SUSYQM. 

However, it should be interesting to see if a careful discretisation treatment of the path 
integral for S L S Y Q M  also leads to additional potential terms when compared with the 
formal treatment. 

The paper has four main sections and  an appendix. In  section 2 we review the 
geometrical interpretation of SUSYQM which provides us with a well defined 
Hamiltonian. In section 3, we use the Nicolai map [7] to perform a point-canonical 
transformation of the path integral from Cartesian coordinates to curvilinear coordin- 
ates on a flat manifold. We find that the existence of a Nicolai map removes the 
ambiguity associated with defining the path integral, and that the supersymmetric path 
integral contains no additional potential terms. In section 4 we show that it is possible 
to extend the Nicolai map to curved manifolds. In the appendix we give our conventions 
for the fermionic integrals used in the paper. 

0305-4470 90 1 3 2 9 2 7 ~  llS03 50 1990 IOP Publishing Ltd 2927 
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2. Supersymmetric quantum mechanics 

In flat space using Cartesian coordinates, the supersymmetric Hamiltonian is given by 
the conjugated supercharges Q, and Q,* 

where the conjugated supercharges are given by 

and the operators $*‘, $, are respectively fermionic creation and annihilation operators 
which satisfy the anti-commutator relation { rL* ‘ ,  I),,} = ha; .  Po is the momentum 
operator -ihd,. 

The supercharges Q: and Qc can be identified with the conjugated exterior derivative 
d, and its conjugated adjoint 8,. That is, Q1 = ( h / d ) &  = ( h / & )  eCCd e“ and Qc = 
( h / f i ) 8 , = ( h / f i ) e u 8  e-’, where V =  hU. The Hamiltonian H = ( h 2 / 2 ) ( d , + S c ) ’ ,  is 
the conjugated Laplacian acting on differential forms, where we now identify p-forms 
with p-fermion supersymmetric states. 

The Hamiltonian (Laplacian) is well-defined, and for a curved Riemannian mani- 
fold we have 

1 
Q,= - - g Y 8 $ . , [ ~ 8 + i ( ~ R ~ ) ]  ( 2 . 5 )  d2 

where T ,  = P, +iTEprL*p$, is the covariant derivative -ihC,, and satisfies the commu- 
tator relations 

[ P - ,  x p ]  = -ih8f 

[Po, = 0 

[Po, $01 = 0 

[T , ,  x p ]  = - i i S f  

[T , ,  = i h r f w $ * @  

[ T u ,  $01 = -ihr:,$, 
[ T , ,  T ~ ]  = -ihRP’,,,$*’$,. 

In curved space we have the operator Q* = ( h / & ) $ * ” ~ , .  Naively we would expect 
its adjoint to be - ( h / f i ) q w + p .  However, since the scalar product is defined by 
(A,  B )  = d x k  g1’2A,, p B F Y  p ,  Q* has adjoint Q = - (h /Jz)g- i ’2(p ,g”~$F)  which is 
equal to Q = -( h/ f i )gg”rL,~ ,  because g-I ’ppg1’’ = rE,. 

The Hamiltonian (1/ h ) {  Q:, Qc} has a well defined operator ordering, 
H=’ -i/2,. 1 1 2  F 2g ,g g “7, + iRuPyAICI*L) $p** ’9, 

+tg~’”(C,V)(V.V) - W ( V , V , v ) [ $ * ” ,  &I.  (2.7) 
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O n  a flat manifold the curvature tensor is zero, and hence the second term on the 
right-hand side of equation (2 .7 )  will be zero. 

3. The path integral 

For supersymmetric field theories in flat space there exist Nicolai maps. We shall use 
the following definition of a Nicolai map [6]. The Nicolai map is a transformation 
of the bosonic field configurations cp,(x), N :  cp,(x) +. t l ( x ) ,  such that 

( a )  the bosonic part of the Lagrangian is given by 

1 
L - - 6: +total divergence 

8 - 2  1 

( 6 )  the Jacobian of the transformation det( Sg,/Gp,) is given by the determinant 
for the fermions 

where the total Lagrangian is L = LB + LF.  
For SUSYQM the Nicolai maps can be interpreted as stochastic processes [8]. In  

the above references [8], the formal properties of path integrals were used to show 
the equivalence of the Nicolai maps and SUSYQM. However it is well known that path 
integrals have ambiguities when defined at the discrete level, even in flat space, and  
in curved space the ambiguities are more numerous [ 9 ] .  Since the Nicolai maps 
encountered in flat space SUSYQM are stochastic processes which can be defined at the 
discrete level [lo], we intend to relate the discretisation of the stochastic process to 
the discretisation of the path integral by using the Nicolai map. Since there is a 
relationship between operator ordering of the Hamiltonian and the associated path 
integral, we should be able to find a relationship between the discretisation of the 
Nicolai map, the discretisation of the path integral, and  operator ordering of the 
Hamiltonian. 

First we shall start with S U S Y Q M  on a flat manifold. The Hamiltonian is 

H = 4 7 PUP, + 7 (dc, v) ( d h  v )  - 4 7 U '( do  d h  v) [ $" ', 

AX: = 7"'{dhV(A,)}Af ,  +Awp (3.2) 

(3.1) 
The Nicolai map can be written as a stochastic process in the form 

where Ax: = xB - X P - ~ ,  A ,  = x,-, i- Ahx, ,  A WP = w: - wP-, , where wP is a Wiener process 
[ 101. This stochastic differential equation is just the integral of the Langevin equation 
1" = 7)"'(d,v) + 6". 

The probability density P(  w,,  t , )  satisfies 

(3.3a) 

Following [ l l ] ,  for infinitesimal time intervals A t ,  the above equation can be approxi- 
mated by 
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where it is understood that the path integral is for one infinitesimal time step. Using 
the stochastic differential equation (3.2), we perform a change of variables in (3.36) 
fiom the stochastic variables (Wiener coordinates) to Cartesian coordinates, obtaining 
a path integral which corresponds to the no-fermion sector of S U S V Q M ,  

where ~ ( x , ,  t , )  = P(x , ,  t , )  exp[- V(x,)]  and we have used the fact that [9] 

{d,v(h,)}AX" = v ( X , j  - V(X)-,)-+(l  -2A)vUh{8,dbV}ht,. (3.5) 

Equation (3.5) is an important result in the manipulation of discrete path integrals. 
dt(d,,V)x" = V ( x , )  - V(x,,). But for the discrete path Formally we have the integral 

integral we use (3.5) to find that 

I,' dt(d,V)x' = {d,V(A,)}Ax:' 
, = I  

.*. 

= V(X,) -  V ( x 0 ) - ~ ( l - 2 A )  1 q"'{d,d,,v}sf, 
I = I  

which is not the naive result expected, but rather a A dependent expression. The 
Jacobian for this change of variables is given by 

Note that the A dependent term in the integrand of (3.4) produced by (3.5) cancels 
the A dependent term in the determinant, and  hence the path integral is independent 
of A.  

In the spirit of part ( b )  of the definition of a Nicolai map, we can express equation 
(3.4) for the determinant in the form of a fermionic integral (see appendix 1 for our 
convention for the fermionic integrals): 

$*'(A,) = (1 - A ) $ * h (  t,)+A$*'(t!-I). (3.8) 

We see that equations (3.7) and (3.8) suggest an ordering for the fermionic variables 
in the definition of the path integral. 

We can ask the question, will the above discretisation solve the ambiguities encoun- 
tered in defining a discrete path integral for S U S Y Q M ?  Towards an  answer to this 
question, we consider the SUSYQM of equation (3.1) but now described in curvilinear 
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coordinates. We are assured that the Nicolai map exists, because we are still on a flat 
manifold. 

The Hamiltonian in curvilinear coordinates is 

H = i g - l  27+g‘ g P’ T ,  + i g ” ’ ( r , v ) ( y ,  v ) - l g ” - ( r p r c  v)[$*’,  4-1 (3.9) 

where r, = P, 1- iI‘;,IL*pcL,,. 
In this case the stochastic process is given by 

Dx”(A,)  = g””(A,){d,V(A,)}At,+ Et(A,)AW: (3.10) 

which is the generalisation of equation (3.2) to curvilinear coordinates. E E are vielbeins 
with the property q”’EEE;= g”’ ,  where p, v are curvilinear coordinate indices, and 
a, b are for Cartesian coordinate indices. The case A ,  = 0 corresponds to It6 calculus 
[lo]. In the following calculation we use the fdCt that the manifold is flat, so that the 
vielbeins satisfy a,E: + r t , E t  = O .  We can interpret 

(3.1 1) 

as the geodesic distance between x’: and x’:-’, where the geodesic is parametrised by 
A ,  such that x’(A, = 0) = and x g ( h ,  = 1) = x’: . The velocity is then the geodesic 
distance divided by the time interval and we see that equation (2.10) is just the integral 
of the Langevin equation in curvilinear coordinate x” = 8”’ (a ,  V) + 6”.  

Again we start with the Wiener process equation (3.3) and change variables to 
curvilinear coordinates, to give a path-integral which corresponds to the no-fermion 
sector of S U S Y Q M .  Using the identity 

Dx” ( A , )  = Ax” 1- f( 1 - 2 A  )gCrp)( A ,  ) & ( A ,  )A  t ,  

det[A+ B ]  = det A[ 1 +Tr( 1 -‘E) +$[Tr(A-’B)]’-i Tr(A- ’B)’+ , . .] 
the determinant for this change of variables can be written as 

6AW A 
d e t [ z ]  = g ’  ’ ( A , ) (  l+AT:,(A,)Ax/: +-(l-2A){a,g”p~r”,,}At, 2 

(3.12) 

where g(A,) = det g””(  A ,  1, and 

+ $g””(T, V)( V) + $( 1 - 2A 

Here the Jacobian is 

J[x,, X,-L] = g-l ‘(x,)g’ ?(x,_ (3.14) 

Now the scalar wave function is ~ ( x , ,  t , )  =exp[-V(x,)]S(x, ,  t , ) ,  where we have the 
condition j d x g ’  ’S(x,, t , )  = 1. Previously we had the condition dx  P(x, ,  t , )  = 1, hence 
P(x, ,  r , ) = g ’  ’S(x,, r , )  and this is the origin of the g-’ ’(x,)g’ ’ ( x , - ~ )  term in the 
Jacobian which can be expressed as 
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Equation (3.13) is just the point-canonical transformation of the path integral (3.4) 
and is a generalisation of the result of Gervais and Jevicki [6]. They showed that a 
naive change of variables of the path integral gives a different result than the change 
of variables of the discretised path integral. Here we see that the extra potential terms 
are contained in the Jacobian and in the geodesic distance used in the kinetic term. 
The result of (3.13) generalises that of Gervais and Jevicki to an arbitrary parameter 
A in the interval [0,1], from the case they considered where A = f .  

There is a relationship between the path integral and operator ordering given by 
the following expressions. The one-time step kernel (where A t  is infinitesimal) 

Ax’ Ax” A$*“ 1 fi (27rAt)”’  I = 1  A t  A t  At  d$, exp [ - A t  { g,,A A,  1 - - - - g”’ (A , )  

x[ l  -nA,(Ai)Ax’ +-PCAt+&rP,,(A,)Ax”$*”(Ai)$p 

+ yDeP$ * “ (Ai ) $p A t  + a E m P : $ *  ” ( A i  cclp$* ( A ,   c cl^ A t  I ( 3 . 1 6 ~ )  

leads to a Fokker-Planck equation (a  Schrodinger equation with imaginary time) of 
the form 

= i ( l  -A){d,a,g’”~}+~Ag””{a,d,,’4’} -;A(1 - A){d,,d,,gwL’}’4’ 

- a [ ( 1 - A ) { d .g ’ ”A, ‘4’ } + A g ’ “ A ,  { d ‘I’ } ] 

- E [  (1 - A ) { a , g ” ” r ; , [  $”“ (LpIA’4’) + Ag’”rP,,[$*” $6 I*  {aL,*}] 
+pcv + yDup [ $*a $p 1 A Vr + y E m P y 6  [ $*a $’p$* $6 ]A Vr? (3.16b) 

where ‘4’ = A,,. . . , (x)$*’ . . . $*“IO) is a supersymmetric n-fermion state, 4”‘ and Qj are 
respectively the fermionic creation and annihilation operators that act on the fermionic 
vacuum IO). We have used the following notation: [ $ * ” $ u ] A  = (1 - A)$*”$,. -A$,$*” 

Equations (3.16) are the main results of this paper: they give an explicit relationship 
between the path integral and the operator ordering for Hamiltonians which contain 
fermionic operators. We have not been able to find an analogous statement in the 
literature. However, DeAlfaro et a1 [ 121 speculated that the mid-point ( A  = 1) path 
integral leads to Hamiltonians which were Weyl ordered. 

Starting with the Hamiltonian equation (3.9) and changing to imaginary time, we 
can use equation (3.16) to write the path integral as 

and also [$*“$p$*’$lfi]A =[( I  - A ) $ * ” $ p  -A$p$*”][(l -A)$*’$, - A $ J ~ $ * ~ ] .  

Dx’(A,) Dx”(A,)  fi ‘TJI T ( x , ,  x , - , ) F [ $ * ( A ) ,  $1 i g p u ( A , )  ~ - 
( 2 7 ~ A t ) ~  - A t  A t  

J J  

where the fermionic terms are contained in 

Fr $*(A 1, $1 

(3.17) 

= exp[ A $* “ ] g ( A ,  ) [ 1 + l- ( A,  ) $* ( A  ) (L6 Ax ’ 
+ ( 1 - 2A ) A  tg’ ” :o E $* ’ $6 + $A t r‘:” r‘ 6yy $* “ ( A ) +hp$* ( y ) (Cl6 

-(1-2A)Atg’”r‘6y,rP,,$*’(A)$, +i(l  - 2 A ) A t g a P T ~ , T ~ , $ * ’ ( A ) $ ,  

+i( 1 - 2 A ) A t ( d , g ” ” r ~ , ) $ * ’ ( A ) ~ ~  + Atg”((0,O .V)$*”(A)$J,]. (3.18) 
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We also have 

T(x,, X , - J  = [ I  -;(I - ~ A ) ~ ; , ( A ) A ~ ~  -;U - 2 ~ ) ~ ~ V y - p  

+${l -4A(1 -A)} (d~" ' r$At ) ] .  (3.19) 

Upon comparing equations (3.13) and (3.17) we see that after integrating out the 
fermions in F [ $ * ( A ) ,  $3 (see the appendix), the expression does not correspond to 
that of the Jacobian J [ x , ,  x , - ~ ]  for all values of the parameter A.  However for the 
special case A =$, T [ x , ,  x, - , ] lA=t= 1 and J [x , ,  ~ , - , ] l , = ~ =  F [ $ * ( A ) ,  $ ] / A = i .  This sug- 
gests that the stochastic process of equation (3.10) with A =i  is the Nicolai map for 
SUSYQM on  a flat manifold in curvilinear coordinates. It should be noted that the path 
integrals in equations (3.13) and (3.17) give the correct Schrodinger equation for all 
possible values of the parameter A. For A = $ the stochastic process becomes the Nicolai 
map, hence A = f  is the appropriate point about which to discretise. The existence of 
the Nicolai map in curvilinear coordinates resolves the ambiguity in the definition of 
the path integral by forcing us to choose A = $ .  

Equations (3.4) and  (3.13) are stochastic processes, hence the wavefunctions which 
are propagated by the kernels are just scalar wavefunctions. With the Jacobians 
replaced by the fermionic integrals (as in equation (3.20)), these kernels not only 
propagate scalar wavefunctions but also n-fermion states Y. By this we mean that we 
obtain the correct Schrodinger equation for the n-fermion states Y. The A = $ parameter 
value corresponds to the mid-point rule in the path integral, and  from equation (3.16) 
this is also equivalent to Weyl ordering of the operators in the Hamiltonian. This 
agrees with the results of [12] which were obtained in a different manner using the 
invariance of SUSYQM under general coordinate transformations to solve the operator 
ordering ambiguities in the Hamiltonian, and  relating this to Weyl ordering. 

The above results can now be used to quantise the SUSYQM given in the path integral 
form [13]. From equation (3.17) with A = ;( =i) and exponentiating all terms we obtain 

which is the appropriate discretisation for the classical imaginary time susuQM action 

SE = dT[ igpLxpxi  +ig"((G,V)(T', V ~ - { ~ * " + ~ ~ , X p $ " P + g u p ~ ~ T ~ f i V ~ ~ * T } $ I I ] .  

(3.21) 
I 

4. Curved manifolds 

In this section we explore the possibility of extending the Nicolai map to a curved 
Riemannian manifold. We assume that the Nicolai map for a curved manifold is again 
a stochastic process, and  try to generalise the results of section 3 to curved manifolds. 
SUSYQM on a curved manifold is equivalent to the supersymmetric nonlinear c7-model 
in (0-1) dimensions, and  is an example of supersymmetry that contains a non-trivial 
four-fermion term. 
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Using equation (2.7), equation (3.16) and the result of section 3 ,  the path integral 
for the nonlinear u-model at the mid-point is 

Upon integrating the fermions we obtain 

(4.1) 

(4.2) 

where 

We use vielbeins for the curved manifold, which relate natural coordinates (indices 
p, v) and orthonormal coordinates (indices a, b). The vielbeins satisfy 

a7E:+r:AE:= wC, , ,E:  

a-e; -T:,e: = -wac.Te; (4.4) 

where e: is the inverse of E t ,  and wca,, is the spin connection. 
First we shall consider the stochastic differential equation 

D x ~  ( A , )  + AV”’ E g ( A , ) E y (  A , )  W ‘ ~ , ~ ( A , ) A ~ ,  = g’””( A,){d,, V( A, ) }A t ,  + E: ( A , ) A  W: (4.5) 

as a possible candidate for the Nicolai map. We retrace the steps leading to equation 
(3 .13) ,  starting with equation (4.5) instead of equation (3.10) and working at the 
mid-point, as implied by the results of section 3 .  We find that 

AX” 
- +E 2 (i ) w d,.p (1) e 1( X) - 77 ed E 2 w‘?,~ E: ( a  ,, V) 

877 a , p E r w e h , ; E i  X(Xi-1 9 t , -  I )  11 $1 ah c 

where the Jacobian J [ x , ,  x,- , ]  is given by equation (3.14) 

(4.7) 
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Using the identity ~ T ‘ ~ { ~ , w “ , . , } E Z E $  + $ r ) u h w C h , E : W e u , p  E - $vUh wCu+ E E :  = i R ,  
we see that equation (4.6) is equivalent to equation (4.2). The stochastic differential 
equation (4.5) does in fact give the correct Fokker-Planck for the no-fermion state. 
Nevertheless, we note that this is not a Nicolai map as we have defined it above, 
because the Jacobian is not equal to the fermionic determinant of equation (4.3). Thus 
the above stochastic differential equation is appropriate for the propagation of scalar 
wavefunctions which satisfy the Fokker-Planck equation on a curved Riemannian 
manifold, however it is inappropriate as a Nicolai map for the no-fermion sector of 
SUSYQM on a curved manifold. 

There is another way to construct stochastic differential equations which may be 
considered as candidates for the Nicolai map in curved space. We introduce auxiliary 
fields Q.8, which are orthogonal rotation matrices with inverse 4: .  The fields satisfy 
the following conditions 

If we now define transformed vielbeins by 
transformed vielbeins we have 

= E g @ k  and 2; = c$Eei, then for these 

(4.9) 

A straightforward generalisation of equation (3.10) leads us to consider the stochastic 
differential equation 

Dx’(A,) = g””(A,){d,,V(A,)}Ar, + gz(At)A Wp (4.10) 

as the candidate for the Nicolai map. If we compare equations (4.9) and (4.10) with 
the corresponding equations in section 3, we see that the equations have the same 
structure. This implies that the above construction does not give the required Fokker- 
Planck equation on a curved manifold, but only generates a Fokker-Planck equation 
on a flat manifold. 

This conclusion can be arrived at in another way. If wCd = wCC,, dx’ is a connection 
one-form in a orthonormal frame and Gz is another connection one-form in an  
overlapping orthonormal frame, then the two connection one-forms may be related 
by a gauge transformation GE = 4,“[d@h+ wCdOf].  The term in the bracket is zero by 
equation (4.8). A gauge transformation has been made to a frame in which the 
spin-connection is zero, this implies that the manifold is flat. In the paper by Claudson 
and Halpern [8] a similar construction was used; in our notation, this is given by 
6; + wch , , x ”O~  = 0. This is equivalent to dO: + wc,@t = 0, which would imply that 
the gauge has been set such that the manifold is flat. 

The above construction does not lead to a Nicolai map on a curved manifold, 
however it does indicate how we can construct one. We can augment equation (4.8) 
by including a term which is first order in Ax, then equation (4.8) becomes 

d - @ ; ( ~ , ) +  WO, J A , ) W A , )  = - ~ A R “ , , , ( A , ) A x ” ~ C ~ ( A , )  
(4.11) 

d,4uh(A, 1 - &:(A, 1 ~ ‘ b , ~ ( h , )  = ;A4: ( A ,  1 R C b r p ( A ,  )Ax”. 
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Following the procedure of section 3 we obtain 

where 

J [x , ,  x , - ~ ]  = g”2(h) 

We see that the stochastic differential equation (4.10) along with equation (4.11) 
becomes the Nicolai map for a curved Riemannian manifold. 

5. Conclusions 

We have found that a careful treatment of the path integral for SUSYQM and for the 
associated stochastic process implies that at the midpoint the stochastic process can 
be identified as the Nicolai map, and the supersymmetric path integral contains no 
additional potential terms when compared to the formal path integral. This is evidence 
of the remarkable cancellation between the bosons and  fermions in supersymmetry. 

Although the path integral ambiguities were resolved by the explicit use of a Nicolai 
map in flat space, we note that the mid-point rule will also work on curved manifolds. 
By this we mean that the discrete path integral will contain no  additional potential 
terms when compared to the formal path integral for the nonlinear cT-model on a 
curved manifold, and  that the corresponding Hamiltonian will be Weyl ordered. Using 
the mid-point rule we were able to extend the Nicolai map to curved manifolds. 
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Appendix 

In this appendix we define our convention for fermionic integrals used in this paper. 

dJ/*“ = 0 I d$*“ $ * p  = S a p  I 
I dJ/, = 0. I d9, J/p = a,, 
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Some useful integrals are 

n {d$*' d$,} exp(A$*"G,) = 1 5 J l l  

1 id$*' d$,} exp(W*"$a)G*r  = c L * p ( ~ , )  

k n { W * '  dG,l exp(~$*"IL, )$*"( t , )$~$~ ' )  = cL*"(t,)s; 1 , = 1  

where ~ r L * " = $ C l " " ( t , ) - $ * " ( t , - l ) ,  $ * " = $ * " ( t , - l ) ,  and $, = $ , ( t ,  
The supersymmetric kernels propagate n-fermion states. As an  example, consider 

the kernel in equation (3.20). We will propagate a one-fermion state A , ( x , - ,  , t , - , )$*" lO)  
to 

A,(x,, t , ) I L * " ( t , ) / O ) =  dx , - ,K(x , ,  t ,  ; X, i f  t , - i )A , , (x8- i ,  t l - l ) lL*" lO? 5 
where K ( x , ,  t , x , - , ,  t , - , )  is the kernel given in equation (3.20). Using the standard 
technique of expanding to order A t  and then doing the fermionic and bosonic integrals, 
we obtain the imaginary-time Schrodinger equation 

(a,& I$*"( 1, ) 10) 

= [  +$gmP(T,TpA,,)  -g" ' (T , ,TPV)Aa 

+ igUP(T,T ' ,V)A,  + 4 g a P ( T ~ V ) ( G P V ) A , ] I L X " (  t , ) l O ) .  

The generalisation to n-fermion states is straightforward. 
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